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Reduced Form of the Green’s Functions for Disks
and Annular Rings

Fayez A. Alhargan and Sunil R. Judah

Abstract —Available Green’s functions for circular and annular ring
microstrip circuits involve doubly infinite series. These series are com-
putationally expensive in terms of the time necessary for summing the
series and the memory required to hold the eigenvalues. In this paper
the Green’s function is simplified to a single series using a new single-
summation method. The resulting single series eliminates the need for
the eigenvalues and increases the speed of computation.

1. INTRODUCTION

In the analysis of microstrip antennas of patch circuits the
Green’s function is obtained using the modal expansion. This
method gives rise to a doubly infinite series [1]. The mode
matching method has also been used to obtain the impedance
directly in a single series format; this method is applicable to
ports around the periphery only. However, Carslaw [2] has used
the result of Kneser [5] to show that the Green’s function for
cylindrical coordinates can be analytically summed over the
modes, reducing the Green’s function by one series. In this
paper the Green’s function is simplified by a method different
from that of [5]. Although there are a number of methods for
obtaining this result, the method used here is direct in its
approach. The Green’s functions for the circular disk and the
annular ring are obtained in single series format and the two
methods are compared for both accuracy and efficiency.

II. GreeN’s FuncrioN FOR A CIRCULAR Disk

The Green’s function for a circle of radius a is given by [1]
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Note that no restriction is placed on n; it can be irrational,
complex, etc. Now using Mittag-Leffler’s expansion theorem:
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where p,, is the mth pole of F(z), andR,, is the residue of
F(z) at the mth pole. Now F,(k) has poles at k =+ k,,, and
F0) = 0. Therefore
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Multiplying through by joudo, cos n(¢ — ¢,) and then sum-
ming over n gives (2). For the special case r=r,=0, the
Green’s function is given by
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Now F(k) has poles at k = + k,, and F(0) = 0. Therefore using
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Subtracting from both sides 1/mka and then multiplying by
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III. GrREEN’s FUNCTION FOR AN ANNULAR RING

The Green’s function of an annular ring microstrip antenna of
inner and outer radii a and b respectively is given by [1]
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In the same manner as above, F,(k) can be expanded using
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Multiplying through by joud cos n(¢ — ¢,)/mwk and then sum-

" ming over #n gives (15a).

IV. IMpEDANCE FORMULATION

The elements of the impedance matrix for a multiport circular
disk are given by

1
Z;= W; fw,-[ch(s/s()) ds ds. (25)
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Hence using the double series form, the impedance matrix
elements are given as
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In the above, it is assumed that the port connections are
circular.
The elements of the impedance matrix for a multiport annular
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The double-series form for the ring gives
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For the case where the ports are around the periphery the A "E

equations can be simplified further as follows. The double-series
form for the disk gives
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V. CompaRIsON OF THE Two Forms

Comparison of the equivalence and time taken for the compu-
tation of the two forms was carried out by simulating two
junctions: (i) A 4-port rat race circular disk of radius 15 mm and
(ii) a 4-port annular ring of outer and inner radii 15 mm and
5 mm respectively. In both cases the ports widths were 4.4 mm
and were positioned at 0°, 90°, 135°, and 225°. The substrate was
assumed to have a relative permittivity of e, = 2.5 and a height
of 1.524 mm.

The results are given for Z,, at a frequency of 4.5 (GHz). Fig.
1 shows the time ratios (time taken by double series/time taken
by reduced form) against the number of modes used for the
annular ring and the circular disk. Fig. 2 shows the values of Z,,
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for the circular disk for both the double series and the reduced
form and the discrepancy between them., Fig. 3 shows the values
of Z,, for the annular ring for both the double series and the
reduced form as well as the discrepancy between them.

VI. CoNcLUSION

The Green’s functions for the circular disk and the annular
ring have been reduced to single-series forms in a mathemati-
cally direct manner, eliminating the need for the eigenvalues
and, as a consequence, improving the speed and accuracy of the
computation.
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A Surface Integral Equation Method for the
Finite Element Solution of Wavegunide
Discontinuity Problems

Omar M. Ramahi and Raj Mittra

Abstract —The surface integral equation method, which is typically
employed in the finite element solution of open-region scattering prob-
lems, has been applied in this paper to the solution of waveguide
discontinuity problems. The major advantage offered by the surface
integral equation approach over other available methods is that it allows
the mesh-truncating boundaries to be brought as close to the discontinu-
ity as possible, thus helping to reduce the size of the system matrix. In
addition, unlike the mode matching technique, the surface integral
equation formulation does not require the solution of any auxiliary
matrix system. Numerical results are presented to illustrate the validity
of the formulation.

I. INTRODUCTION

When designing waveguide devices, it is often necessary to
introduce discontinuities or loads that are used for different
purposes such as phase shifting or power matching to a specific
load or termination. The analysis of such waveguide junctions or
discontinuities has traditionally been carried out using the
mode-matching techniques and the integral equation method
[1], [2]. However, when the discontinuities are irregularly shaped
or involve inhomogeneous or anisotropic objects, the integral
equation methods become quite laborious and difficult to apply.
For such complex and irregularly shaped geometries, either the
finite element or the finite difference method becomes the
preferred choice. Additionally, the finite methods generate
highly sparse and banded matrices which can be efficiently
handled using special algorithms.

When using the finite element (or the finite difference) method
to solve boundary values problems such as waveguide disconti-
nuities, two major consideration arise. First, it is always desir-
able to bring the mesh-truncating boundary as close as possible
to the discontinuity junction in order to reduce the number of
mesh points and, hence, the size of the associated matrix.
Second, a boundary condition must be imposed on the terminal
boundaries such that it accurately reflects the proper field
behavior there. The task of devising an efficient solution proce-
dure that accommodates the above two considerations is the
principal subject of discussion in this paper.

Conventionally, finite element formulations of the waveguide
discontinuity problem are based upon the truncation of the
finite element mesh region at a distance where the amplitudes
of the evanescent modes become negligible, and then the impo-
sition of a Dirichlet or a Neumann boundary condition [3], [4].
Such construction offers the advantage of generating a sparse
matrix system. In certain applications, such as the modeling of
electromagnetic pulse simulators, the width of the simulator/
waveguide may range from a fraction of a wavelength to tens of
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